A Multimodal Graph Neural Network Framework for Cancer Molecular Subtype Classification

02/24/2023
by   Bingjun Li, et al.
0

The recent development of high-throughput sequencing creates a large collection of multi-omics data, which enables researchers to better investigate cancer molecular profiles and cancer taxonomy based on molecular subtypes. Integrating multi-omics data has been proven to be effective for building more precise classification models. Current multi-omics integrative models mainly use early fusion by concatenation or late fusion based on deep neural networks. Due to the nature of biological systems, graphs are a better representation of bio-medical data. Although few graph neural network (GNN) based multi-omics integrative methods have been proposed, they suffer from three common disadvantages. One is most of them use only one type of connection, either inter-omics or intra-omic connection; second, they only consider one kind of GNN layer, either graph convolution network (GCN) or graph attention network (GAT); and third, most of these methods lack testing on a more complex cancer classification task. We propose a novel end-to-end multi-omics GNN framework for accurate and robust cancer subtype classification. The proposed model utilizes multi-omics data in the form of heterogeneous multi-layer graphs that combines both inter-omics and intra-omic connections from established biological knowledge. The proposed model incorporates learned graph features and global genome features for accurate classification. We test the proposed model on TCGA Pan-cancer dataset and TCGA breast cancer dataset for molecular subtype and cancer subtype classification, respectively. The proposed model outperforms four current state-of-the-art baseline models in multiple evaluation metrics. The comparative analysis of GAT-based models and GCN-based models reveals that GAT-based models are preferred for smaller graphs with less information and GCN-based models are preferred for larger graphs with extra information.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset