A Multi-View Learning Approach to Enhance Automatic 12-Lead ECG Diagnosis Performance

07/30/2022
by   Jae Won Choi, et al.
0

The performances of commonly used electrocardiogram (ECG) diagnosis models have recently improved with the introduction of deep learning (DL). However, the impact of various combinations of multiple DL components and/or the role of data augmentation techniques on the diagnosis have not been sufficiently investigated. This study proposes an ensemble-based multi-view learning approach with an ECG augmentation technique to achieve a higher performance than traditional automatic 12-lead ECG diagnosis methods. The data analysis results show that the proposed model reports an F1 score of 0.840, which outperforms existing state-ofthe-art methods in the literature.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro