A multi-device dataset for urban acoustic scene classification

07/25/2018
by   Annamaria Mesaros, et al.
0

This paper introduces the acoustic scene classification task of DCASE 2018 Challenge and the TUT Urban Acoustic Scenes 2018 dataset provided for the task, and evaluates the performance of a baseline system in the task. As in previous years of the challenge, the task is defined for classification of short audio samples into one of predefined acoustic scene classes, using a supervised, closed-set classification setup. The newly recorded TUT Urban Acoustic Scenes 2018 dataset consists of ten different acoustic scenes and was recorded in six large European cities, therefore it has a higher acoustic variability than the previous datasets used for this task, and in addition to high-quality binaural recordings, it also includes data recorded with mobile devices. We also present the baseline system consisting of a convolutional neural network and its performance in the subtasks using the recommended cross-validation setup.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset