A Model for Non-Monotonic Reasoning Using Dempster's Rule

03/27/2013
by   Mary McLeish, et al.
0

Considerable attention has been given to the problem of non-monotonic reasoning in a belief function framework. Earlier work (M. Ginsberg) proposed solutions introducing meta-rules which recognized conditional independencies in a probabilistic sense. More recently an e-calculus formulation of default reasoning (J. Pearl) shows that the application of Dempster's rule to a non-monotonic situation produces erroneous results. This paper presents a new belief function interpretation of the problem which combines the rules in a way which is more compatible with probabilistic results and respects conditions of independence necessary for the application of Dempster's combination rule. A new general framework for combining conflicting evidence is also proposed in which the normalization factor becomes modified. This produces more intuitively acceptable results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro