A Minimum Relative Entropy Controller for Undiscounted Markov Decision Processes

02/07/2010
by   Pedro A. Ortega, et al.
0

Adaptive control problems are notoriously difficult to solve even in the presence of plant-specific controllers. One way to by-pass the intractable computation of the optimal policy is to restate the adaptive control as the minimization of the relative entropy of a controller that ignores the true plant dynamics from an informed controller. The solution is given by the Bayesian control rule-a set of equations characterizing a stochastic adaptive controller for the class of possible plant dynamics. Here, the Bayesian control rule is applied to derive BCR-MDP, a controller to solve undiscounted Markov decision processes with finite state and action spaces and unknown dynamics. In particular, we derive a non-parametric conjugate prior distribution over the policy space that encapsulates the agent's whole relevant history and we present a Gibbs sampler to draw random policies from this distribution. Preliminary results show that BCR-MDP successfully avoids sub-optimal limit cycles due to its built-in mechanism to balance exploration versus exploitation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset