A Minimum Relative Entropy Controller for Undiscounted Markov Decision Processes

02/07/2010
by   Pedro A. Ortega, et al.
0

Adaptive control problems are notoriously difficult to solve even in the presence of plant-specific controllers. One way to by-pass the intractable computation of the optimal policy is to restate the adaptive control as the minimization of the relative entropy of a controller that ignores the true plant dynamics from an informed controller. The solution is given by the Bayesian control rule-a set of equations characterizing a stochastic adaptive controller for the class of possible plant dynamics. Here, the Bayesian control rule is applied to derive BCR-MDP, a controller to solve undiscounted Markov decision processes with finite state and action spaces and unknown dynamics. In particular, we derive a non-parametric conjugate prior distribution over the policy space that encapsulates the agent's whole relevant history and we present a Gibbs sampler to draw random policies from this distribution. Preliminary results show that BCR-MDP successfully avoids sub-optimal limit cycles due to its built-in mechanism to balance exploration versus exploitation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro