A Minimax Optimal Algorithm for Crowdsourcing

06/01/2016
by   Thomas Bonald, et al.
0

We consider the problem of accurately estimating the reliability of workers based on noisy labels they provide, which is a fundamental question in crowdsourcing. We propose a novel lower bound on the minimax estimation error which applies to any estimation procedure. We further propose Triangular Estimation (TE), an algorithm for estimating the reliability of workers. TE has low complexity, may be implemented in a streaming setting when labels are provided by workers in real time, and does not rely on an iterative procedure. We further prove that TE is minimax optimal and matches our lower bound. We conclude by assessing the performance of TE and other state-of-the-art algorithms on both synthetic and real-world data sets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset