A Measurement Study of the Impact of Adjacent Channel Interference between C-band and CBRS
The 3.7 - 3.98 GHz frequency band (also known as C-band) was recently allocated in the US for the deployment of 5G cellular services. Prior to this, the lower adjacent band, 3.55 - 3.7 GHz, had been allocated to Citizens Broadband Radio Service (CBRS), where the entire 150 MHz can be used for free by Tier 3 General Authorized Access (GAA) users, but access to the spectrum needs to be authorized by the Spectrum Access System (SAS). GAA users are allowed on a channel only when there are no Tier 1 Incumbents (Navy radars) or Tier 2 Priority Access License (PAL) users in the area. However, since there are no guard bands between GAA and C-band, and both systems employ Time Division Duplexing (TDD) where the uplink/downlink configurations are not synchronized, adjacent channel interference can potentially reduce the performance of both systems. In this paper, we quantify the effect of this mutual interference by performing experiments with a real-world deployment. We observe significant downlink throughput reductions on both systems when two devices are in close proximity to each other, and one is transmitting uplink while the other is transmitting downlink: 60 C-band. We believe that this is the first paper to demonstrate this in a real deployment. This throughput degradation was reduced when the CBSD changed its channel and operated 20 MHz away from C-band, essentially creating a guard band between the channels. We also demonstrate the improvement in latency under adjacent channel interference by implementing MicroSlicing at the CBSD. Our results indicate that addressing adjacent channel interference due to the lack of guard bands and TDD configuration mismatch is crucial to improving the performance of both CBRS and C-band systems.
READ FULL TEXT