A Machine Learning Framework for Authorship Identification From Texts
Authorship identification is a process in which the author of a text is identified. Most known literary texts can easily be attributed to a certain author because they are, for example, signed. Yet sometimes we find unfinished pieces of work or a whole bunch of manuscripts with a wide variety of possible authors. In order to assess the importance of such a manuscript, it is vital to know who wrote it. In this work, we aim to develop a machine learning framework to effectively determine authorship. We formulate the task as a single-label multi-class text categorization problem and propose a supervised machine learning framework incorporating stylometric features. This task is highly interdisciplinary in that it takes advantage of machine learning, information retrieval, and natural language processing. We present an approach and a model which learns the differences in writing style between 50 different authors and is able to predict the author of a new text with high accuracy. The accuracy is seen to increase significantly after introducing certain linguistic stylometric features along with text features.
READ FULL TEXT