A Machine Learning based Empirical Evaluation of Cyber Threat Actors High Level Attack Patterns over Low level Attack Patterns in Attributing Attacks
Cyber threat attribution is the process of identifying the actor of an attack incident in cyberspace. An accurate and timely threat attribution plays an important role in deterring future attacks by applying appropriate and timely defense mechanisms. Manual analysis of attack patterns gathered by honeypot deployments, intrusion detection systems, firewalls, and via trace-back procedures is still the preferred method of security analysts for cyber threat attribution. Such attack patterns are low-level Indicators of Compromise (IOC). They represent Tactics, Techniques, Procedures (TTP), and software tools used by the adversaries in their campaigns. The adversaries rarely re-use them. They can also be manipulated, resulting in false and unfair attribution. To empirically evaluate and compare the effectiveness of both kinds of IOC, there are two problems that need to be addressed. The first problem is that in recent research works, the ineffectiveness of low-level IOC for cyber threat attribution has been discussed intuitively. An empirical evaluation for the measure of the effectiveness of low-level IOC based on a real-world dataset is missing. The second problem is that the available dataset for high-level IOC has a single instance for each predictive class label that cannot be used directly for training machine learning models. To address these problems in this research work, we empirically evaluate the effectiveness of low-level IOC based on a real-world dataset that is specifically built for comparative analysis with high-level IOC. The experimental results show that the high-level IOC trained models effectively attribute cyberattacks with an accuracy of 95 as compared to the low-level IOC trained models where accuracy is 40
READ FULL TEXT