A Machine Learning Approach to Measuring Climate Adaptation

02/02/2023
by   Max Vilgalys, et al.
0

I measure adaptation to climate change by comparing elasticities from short-run and long-run changes in damaging weather. I propose a debiased machine learning approach to flexibly measure these elasticities in panel settings. In a simulation exercise, I show that debiased machine learning has considerable benefits relative to standard machine learning or ordinary least squares, particularly in high-dimensional settings. I then measure adaptation to damaging heat exposure in United States corn and soy production. Using rich sets of temperature and precipitation variation, I find evidence that short-run impacts from damaging heat are significantly offset in the long run. I show that this is because the impacts of long-run changes in heat exposure do not follow the same functional form as short-run shocks to heat exposure.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset