A Locating Model for Pulmonary Tuberculosis Diagnosis in Radiographs

10/22/2019 ∙ by Jiwei Liu, et al. ∙ 17

Objective: We propose an end-to-end CNN-based locating model for pulmonary tuberculosis (TB) diagnosis in radiographs. This model makes full use of chest radiograph (X-ray) for its improved accessibility, reduced cost and high accuracy for TB disease. Methods: Several specialized improvements are proposed for detection task in medical field. A false positive (FP) restrictor head is introduced for FP reduction. Anchor-oriented network heads is proposed in the position regression section. An optimization of loss function is designed for hard example mining. Results: The experimental results show that when the threshold of intersection over union (IoU) is set to 0.3, the average precision (AP) of two test data sets provided by different hospitals reaches 0.9023 and 0.9332. Ablation experiments shows that hard example mining and change of regressor heads contribute most in this work, but FP restriction is necessary in a CAD diagnose system. Conclusion: The results prove the high precision and good generalization ability of our proposed model comparing to previous works. Significance: We first make full use of the feature extraction ability of CNNs in TB diagnostic field and make exploration in localization of TB, when the previous works focus on the weaker task of healthy-sick subject classification.



There are no comments yet.


page 2

page 3

page 5

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.