A Little Is Enough: Circumventing Defenses For Distributed Learning

02/16/2019
by   Moran Baruch, et al.
6

Distributed learning is central for large-scale training of deep-learning models. However, they are exposed to a security threat in which Byzantine participants can interrupt or control the learning process. Previous attack models and their corresponding defenses assume that the rogue participants are (a) omniscient (know the data of all other participants), and (b) introduce large change to the parameters. We show that small but well-crafted changes are sufficient, leading to a novel non-omniscient attack on distributed learning that go undetected by all existing defenses. We demonstrate our attack method works not only for preventing convergence but also for repurposing of the model behavior (backdooring). We show that 20 degrade a CIFAR10 model accuracy by 50 MNIST and CIFAR10 models without hurting their accuracy

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset