A linear implicit Euler method for the finite element discretization of a controlled stochastic heat equation

06/09/2020 ∙ by Peter Benner, et al. ∙ 0

We consider a numerical approximation of a linear quadratic control problem constrained by the stochastic heat equation with non-homogeneous Neumann boundary conditions. This involves a combination of distributed and boundary control, as well as both distributed and boundary noise. We apply the finite element method for the spatial discretization and the linear implicit Euler method for the temporal discretization. Due to the low regularity induced by the boundary noise, convergence orders above 1/2 in space and 1/4 in time cannot be expected. We prove such optimal convergence orders for our full discretization when the distributed noise and the initial condition are sufficiently smooth. Under less smooth conditions, the convergence order is further decreased. Our results only assume that the related (deterministic) differential Riccati equation can be approximated with a certain convergence order, which is easy to achieve in practice. We confirm these theoretical results through a numerical experiment in a two dimensional domain.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.