DeepAI AI Chat
Log In Sign Up

A Knowledge Enhanced Learning and Semantic Composition Model for Multi-Claim Fact Checking

by   Shuai Wang, et al.

To inhibit the spread of rumorous information and its severe consequences, traditional fact checking aims at retrieving relevant evidence to verify the veracity of a given claim. Fact checking methods typically use knowledge graphs (KGs) as external repositories and develop reasoning mechanism to retrieve evidence for verifying the triple claim. However, existing methods only focus on verifying a single claim. As real-world rumorous information is more complex and a textual statement is often composed of multiple clauses (i.e. represented as multiple claims instead of a single one), multiclaim fact checking is not only necessary but more important for practical applications. Although previous methods for verifying a single triple can be applied repeatedly to verify multiple triples one by one, they ignore the contextual information implied in a multi-claim statement and could not learn the rich semantic information in the statement as a whole. In this paper, we propose an end-to-end knowledge enhanced learning and verification method for multi-claim fact checking. Our method consists of two modules, KG-based learning enhancement and multi-claim semantic composition. To fully utilize the contextual information, the KG-based learning enhancement module learns the dynamic context-specific representations via selectively aggregating relevant attributes of entities. To capture the compositional semantics of multiple triples, the multi-claim semantic composition module constructs the graph structure to model claim-level interactions, and integrates global and salient local semantics with multi-head attention. Experimental results on a real-world dataset and two benchmark datasets show the effectiveness of our method for multi-claim fact checking over KG.


page 1

page 2

page 3

page 4


Reasoning Over Semantic-Level Graph for Fact Checking

We study fact-checking in this paper, which aims to verify a textual cla...

End-to-End Multimodal Fact-Checking and Explanation Generation: A Challenging Dataset and Models

We propose the end-to-end multimodal fact-checking and explanation gener...

Graph-based Retrieval for Claim Verification over Cross-Document Evidence

Verifying the veracity of claims requires reasoning over a large knowled...

Generating Fact Checking Summaries for Web Claims

We present SUMO, a neural attention-based approach that learns to establ...

Varifocal Question Generation for Fact-checking

Fact-checking requires retrieving evidence related to a claim under inve...

Claim-Dissector: An Interpretable Fact-Checking System with Joint Re-ranking and Veracity Prediction

We present Claim-Dissector: a novel latent variable model for fact-check...

Unified Dual-view Cognitive Model for Interpretable Claim Verification

Recent studies constructing direct interactions between the claim and ea...