A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model Evaluation

02/10/2016
by   Qiang Liu, et al.
0

We derive a new discrepancy statistic for measuring differences between two probability distributions based on combining Stein's identity with the reproducing kernel Hilbert space theory. We apply our result to test how well a probabilistic model fits a set of observations, and derive a new class of powerful goodness-of-fit tests that are widely applicable for complex and high dimensional distributions, even for those with computationally intractable normalization constants. Both theoretical and empirical properties of our methods are studied thoroughly.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro