A Kernel Stein Test for Comparing Latent Variable Models
We propose a nonparametric, kernel-based test to assess the relative goodness of fit of latent variable models with intractable unnormalized densities. Our test generalises the kernel Stein discrepancy (KSD) tests of (Liu et al., 2016, Chwialkowski et al., 2016, Yang et al., 2018, Jitkrittum et al., 2018) which required exact access to unnormalized densities. Our new test relies on the simple idea of using an approximate observed-variable marginal in place of the exact, intractable one. As our main theoretical contribution, we prove that the new test, with a properly corrected threshold, has a well-controlled type-I error. In the case of models with low-dimensional latent structure and high-dimensional observations, our test significantly outperforms the relative maximum mean discrepancy test (Bounliphone et al., 2015) , which cannot exploit the latent structure.
READ FULL TEXT