A Hybrid Model for Forecasting Short-Term Electricity Demand

Currently the UK Electric market is guided by load (demand) forecasts published every thirty minutes by the regulator. A key factor in predicting demand is weather conditions, with forecasts published every hour. We present HYENA: a hybrid predictive model that combines feature engineering (selection of the candidate predictor features), mobile-window predictors and finally LSTM encoder-decoders to achieve higher accuracy with respect to mainstream models from the literature. HYENA decreased MAPE loss by 16% and RMSE loss by 10% over the best available benchmark model, thus establishing a new state of the art for the UK electric load (and price) forecasting.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset