A hybrid index model for efficient spatio-temporal search in HBase

05/19/2018
by   Chengyuan Zhangy, et al.
0

With advances in geo-positioning technologies and geo-location services, there are a rapidly growing massive amount of spatio-temporal data collected in many applications such as location-aware devices and wireless communication, in which an object is described by its spatial location and its timestamp. Consequently, the study of spatio-temporal search which explores both geo-location information and temporal information of the data has attracted significant concern from research organizations and commercial communities. This work study the problem of spatio-temporal k-nearest neighbors search (STkNNS), which is fundamental in the spatial temporal queries. Based on HBase, a novel index structure is proposed, called Hybrid Spatio-Temporal HBase Index (HSTI for short), which is carefully designed and takes both spatial and temporal information into consideration to effectively reduce the search space. Based on HSTI, an efficient algorithm is developed to deal with spatio-temporal k-nearest neighbors search. Comprehensive experiments on real and synthetic data clearly show that HSTI is three to five times faster than the state-of-the-art technique.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro