A Hybrid Approximation to the Marginal Likelihood

02/24/2021
by   Eric Chuu, et al.
0

Computing the marginal likelihood or evidence is one of the core challenges in Bayesian analysis. While there are many established methods for estimating this quantity, they predominantly rely on using a large number of posterior samples obtained from a Markov Chain Monte Carlo (MCMC) algorithm. As the dimension of the parameter space increases, however, many of these methods become prohibitively slow and potentially inaccurate. In this paper, we propose a novel method in which we use the MCMC samples to learn a high probability partition of the parameter space and then form a deterministic approximation over each of these partition sets. This two-step procedure, which constitutes both a probabilistic and a deterministic component, is termed a Hybrid approximation to the marginal likelihood. We demonstrate its versatility in a plethora of examples with varying dimension and sample size, and we also highlight the Hybrid approximation's effectiveness in situations where there is either a limited number or only approximate MCMC samples available.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset