A high-precision framework for phase-field fracture interface reconstructions with application to Stokes fluid-filled fracture surrounded by an elastic medium

12/15/2022
by   Henry von Wahl, et al.
0

This work considers a Stokes flow in a deformable fracture interacting with a linear elastic medium. To this end, we employ a phase-field model to approximate the crack dynamics. Phase-field methods belong to interface-capturing approaches in which the interface is only given by a smeared zone. For multi-domain problems, the accuracy of the coupling conditions is, however, of utmost importance. Here, interface-tracking methods are preferred. The key objective of this work is to construct a robust framework that computes first a crack path via the phase-field method (interface-capturing) and then does an interface-tracking reconstruction. We then discuss several approaches to reconstruct the Eulerian description of the open crack domain. This includes unfitted approaches where a level-set of the crack interface is constructed and an approach where the geometry is re-meshed. Using this reconstructed domain, we can compute the fluid-structure interaction problem between the fluid in the crack and the interacting solid. With the explicit mesh reconstruction of the two domains, we can then use an interface-tracking Arbitrary-Lagrangian-Eulerian (ALE) discretisation approach for the resulting fluid-structure interaction (FSI) problem. Our algorithmic procedure is realised in one final algorithm and one program. We substantiate our approach using several numerical examples based on Sneddon's benchmark and corresponding extensions to Stokes fluid-filled regimes.

READ FULL TEXT

page 12

page 13

research
08/29/2023

A coupled high-accuracy phase-field fluid-structure interaction framework for Stokes fluid-filled fracture surrounded by an elastic medium

In this work, we couple a high-accuracy phase-field fracture reconstruct...
research
12/23/2021

Analysis of the diffuse interface method for the Stokes-Darcy coupled problem

We consider the interaction between a free flowing fluid and a porous me...
research
08/11/2020

An immersed phase field fracture model for fluid-infiltrating porous media with evolving Beavers-Joseph-Saffman condition

This study presents a phase field model for brittle fracture in fluid-in...
research
07/21/2022

A Deep Neural Network/Meshfree Method for Solving Dynamic Two-phase Interface Problems

In this paper, a meshfree method using the deep neural network (DNN) app...
research
01/15/2020

Robust preconditioning of monolithically coupled multiphysics problems

In many applications, one wants to model physical systems consisting of ...
research
10/08/2019

Optimization with nonstationary, nonlinear monolithic fluid-structure interaction

Within this work, we consider optimization settings for nonlinear, nonst...

Please sign up or login with your details

Forgot password? Click here to reset