A high-order exponential integrator for nonlinear parabolic equations with nonsmooth initial data
A variable stepsize exponential multistep integrator, with contour integral approximation of the operator-valued exponential functions, is proposed for solving semilinear parabolic equations with nonsmooth initial data. By this approach, the exponential k-step method would have kth-order convergence in approximating a mild solution, possibly nonsmooth at the initial time. In consistency with the theoretical analysis, a numerical example shows that the method can achieve high-order convergence in the maximum norm for semilinear parabolic equations with discontinuous initial data.
READ FULL TEXT