A Hierarchical Graphical Model for Record Linkage

07/12/2012
by   Pradeep Ravikumar, et al.
0

The task of matching co-referent records is known among other names as rocord linkage. For large record-linkage problems, often there is little or no labeled data available, but unlabeled data shows a reasonable clear structure. For such problems, unsupervised or semi-supervised methods are preferable to supervised methods. In this paper, we describe a hierarchical graphical model framework for the linakge-problem in an unsupervised setting. In addition to proposing new methods, we also cast existing unsupervised probabilistic record-linkage methods in this framework. Some of the techniques we propose to minimize overfitting in the above model are of interest in the general graphical model setting. We describe a method for incorporating monotinicity constraints in a graphical model. We also outline a bootstrapping approach of using "single-field" classifiers to noisily label latent variables in a hierarchical model. Experimental results show that our proposed unsupervised methods perform quite competitively even with fully supervised record-linkage methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset