A Greedy Algorithm for Matrix Recovery with Subspace Prior Information
Matrix recovery is the problem of recovering a low-rank matrix from a few linear measurements. Recently, this problem has gained a lot of attention as it is employed in many applications such as Netflix prize problem, seismic data interpolation and collaborative filtering. In these applications, one might access to additional prior information about the column and row spaces of the matrix. These extra information can potentially enhance the matrix recovery performance. In this paper, we propose an efficient greedy algorithm that exploits prior information in the recovery procedure. The performance of the proposed algorithm is measured in terms of the rank restricted isometry property (R-RIP). Our proposed algorithm with prior subspace information converges under a more milder condition on the R-RIP in compared with the case that we do not use prior information. Additionally, our algorithm performs much better than nuclear norm minimization in terms of both computational complexity and success rate.
READ FULL TEXT