A Graph-Theoretic Analysis of Information Value

02/13/2013 ∙ by Kim-Leng Poh, et al. ∙ 0

We derive qualitative relationships about the informational relevance of variables in graphical decision models based on a consideration of the topology of the models. Specifically, we identify dominance relations for the expected value of information on chance variables in terms of their position and relationships in influence diagrams. The qualitative relationships can be harnessed to generate nonnumerical procedures for ordering uncertain variables in a decision model by their informational relevance.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.