A Graph-guided Multi-round Retrieval Method for Conversational Open-domain Question Answering

04/17/2021 ∙ by Yongqi Li, et al. ∙ 12

In recent years, conversational agents have provided a natural and convenient access to useful information in people's daily life, along with a broad and new research topic, conversational question answering (QA). Among the popular conversational QA tasks, conversational open-domain QA, which requires to retrieve relevant passages from the Web to extract exact answers, is more practical but less studied. The main challenge is how to well capture and fully explore the historical context in conversation to facilitate effective large-scale retrieval. The current work mainly utilizes history questions to refine the current question or to enhance its representation, yet the relations between history answers and the current answer in a conversation, which is also critical to the task, are totally neglected. To address this problem, we propose a novel graph-guided retrieval method to model the relations among answers across conversation turns. In particular, it utilizes a passage graph derived from the hyperlink-connected passages that contains history answers and potential current answers, to retrieve more relevant passages for subsequent answer extraction. Moreover, in order to collect more complementary information in the historical context, we also propose to incorporate the multi-round relevance feedback technique to explore the impact of the retrieval context on current question understanding. Experimental results on the public dataset verify the effectiveness of our proposed method. Notably, the F1 score is improved by 5 respectively.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.