A Global Newton-Type Scheme Based on a Simplified Newton-Type Approach

10/08/2019
by   Mario Amrein, et al.
0

Globalization concepts for Newton-type iteration schemes are widely used when solving nonlinear problems numerically. Most of these schemes are based on a predictor/corrector step size methodology with the aim of steering an initial guess to a zero of f without switching between different attractors. In doing so, one is typically able to reduce the chaotic behavior of the classical Newton-type iteration scheme. In this note we propose a globalization methodology for general Newton-type iteration concepts which changes into a simplified Newton iteration as soon as the transformed residual of the underlying function is small enough. Based on Banach's fixed-point theorem, we show that there exists a neighborhood around a suitable iterate x_n such that we can steer the iterates—without any adaptive step size control but using a simplified Newton-type iteration within this neighborhood—arbitrarily close to an exact zero of f. We further exemplify the theoretical result within a global Newton-type iteration procedure and discuss further an algorithmic realization. Our proposed scheme will be demonstrated on a low-dimensional example thereby emphasizing the advantage of this new solution procedure.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro