A Geometric Approach to Sample Compression

The Sample Compression Conjecture of Littlestone & Warmuth has remained unsolved for over two decades. This paper presents a systematic geometric investigation of the compression of finite maximum concept classes. Simple arrangements of hyperplanes in Hyperbolic space, and Piecewise-Linear hyperplane arrangements, are shown to represent maximum classes, generalizing the corresponding Euclidean result. A main result is that PL arrangements can be swept by a moving hyperplane to unlabeled d-compress any finite maximum class, forming a peeling scheme as conjectured by Kuzmin & Warmuth. A corollary is that some d-maximal classes cannot be embedded into any maximum class of VC dimension d+k, for any constant k. The construction of the PL sweeping involves Pachner moves on the one-inclusion graph, corresponding to moves of a hyperplane across the intersection of d other hyperplanes. This extends the well known Pachner moves for triangulations to cubical complexes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset