A Generative Learning Approach for Spatio-temporal Modeling in Connected Vehicular Network

03/16/2020
by   Rong Xia, et al.
0

Spatio-temporal modeling of wireless access latency is of great importance for connected-vehicular systems. The quality of the molded results rely heavily on the number and quality of samples which can vary significantly due to the sensor deployment density as well as traffic volume and density. This paper proposes LaMI (Latency Model Inpainting), a novel framework to generate a comprehensive spatio-temporal of wireless access latency of a connected vehicles across a wide geographical area. LaMI adopts the idea from image inpainting and synthesizing and can reconstruct the missing latency samples by a two-step procedure. In particular, it first discovers the spatial correlation between samples collected in various regions using a patching-based approach and then feeds the original and highly correlated samples into a Variational Autoencoder (VAE), a deep generative model, to create latency samples with similar probability distribution with the original samples. Finally, LaMI establishes the empirical PDF of latency performance and maps the PDFs into the confidence levels of different vehicular service requirements. Extensive performance evaluation has been conducted using the real traces collected in a commercial LTE network in a university campus. Simulation results show that our proposed model can significantly improve the accuracy of latency modeling especially compared to existing popular solutions such as interpolation and nearest neighbor-based methods.

READ FULL TEXT

page 1

page 2

page 3

page 4

page 5

page 6

research
03/13/2021

Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph Convolutional Networks

The effective deployment of connected vehicular networks is contingent u...
research
08/16/2022

A Latent Feature Analysis-based Approach for Spatio-Temporal Traffic Data Recovery

Missing data is an inevitable and common problem in data-driven intellig...
research
04/04/2020

Deep Reinforcement Learning for Fog Computing-based Vehicular System with Multi-operator Support

This paper studies the potential performance improvement that can be ach...
research
10/05/2018

Service Quality Improvement of Mobile Users in Vehicular Environment by Mobile Femtocell Network Deployment

The femto-access-point (FAP), a low power small cellular base station pr...
research
02/24/2023

A New Scheduler for URLLC in 5G NR IIoT Networks with Spatio-Temporal Traffic Correlations

This paper explores the issue of enabling Ultra-Reliable Low-Latency Com...
research
06/15/2021

Relation Modeling in Spatio-Temporal Action Localization

This paper presents our solution to the AVA-Kinetics Crossover Challenge...

Please sign up or login with your details

Forgot password? Click here to reset