A Generalizable Method for Automated Quality Control of Functional Neuroimaging Datasets

by   Matthew Kollada, et al.

Over the last twenty five years, advances in the collection and analysis of fMRI data have enabled new insights into the brain basis of human health and disease. Individual behavioral variation can now be visualized at a neural level as patterns of connectivity among brain regions. Functional brain imaging is enhancing our understanding of clinical psychiatric disorders by revealing ties between regional and network abnormalities and psychiatric symptoms. Initial success in this arena has recently motivated collection of larger datasets which are needed to leverage fMRI to generate brain-based biomarkers to support development of precision medicines. Despite methodological advances and enhanced computational power, evaluating the quality of fMRI scans remains a critical step in the analytical framework. Before analysis can be performed, expert reviewers visually inspect raw scans and preprocessed derivatives to determine viability of the data. This Quality Control (QC) process is labor intensive, and the inability to automate at large scale has proven to be a limiting factor in clinical neuroscience fMRI research. We present a novel method for automating the QC of fMRI scans. We train machine learning classifiers using features derived from brain MR images to predict the "quality" of those images, based on the ground truth of an expert's opinion. We emphasize the importance of these classifiers' ability to generalize their predictions across data from different studies. To address this, we propose a novel approach entitled "FMRI preprocessing Log mining for Automated, Generalizable Quality Control" (FLAG-QC), in which features derived from mining runtime logs are used to train the classifier. We show that classifiers trained on FLAG-QC features perform much better (AUC=0.79) than previously proposed feature sets (AUC=0.56) when testing their ability to generalize across studies.


page 2

page 3


Effective and Interpretable fMRI Analysis via Functional Brain Network Generation

Recent studies in neuroscience show great potential of functional brain ...

Interpreting Age Effects of Human Fetal Brain from Spontaneous fMRI using Deep 3D Convolutional Neural Networks

Understanding human fetal neurodevelopment is of great clinical importan...

Aiding Medical Diagnosis Through the Application of Graph Neural Networks to Functional MRI Scans

Graph Neural Networks (GNNs) have been shown to be a powerful tool for g...

Uncertainty in fMRI Functional Networks of Autism Brain Imaging Data

In this paper we review the preprocessing pipeline through which fMRI da...

Similarity Learning with Higher-Order Proximity for Brain Network Analysis

In recent years, the similarity learning problem has been widely studied...

Visual Explanation for Identification of the Brain Bases for Dyslexia on fMRI Data

Brain imaging of mental health, neurodevelopmental and learning disorder...

ImageNomer: developing an fMRI and omics visualization tool to detect racial bias in functional connectivity

It can be difficult to identify trends and perform quality control in la...

Please sign up or login with your details

Forgot password? Click here to reset