A General Statistic Framework for Genome-based Disease Risk Prediction

10/27/2014
by   L. Ma, et al.
0

Advances of modern sensing and sequencing technologies generate a deluge of high dimensional space-temporal physiological and next-generation sequencing (NGS) data. Physiological traits are observed either as continuous random functions, or on a dense grid and referred to as function-valued traits. Both physiological and NGS data are highly correlated data with their inherent order, spacing, and functional nature which are ignored by traditional summary-based univariate and multivariate regression methods designed for quantitative genetic analysis of scalar trait and common variants. To capture morphological and dynamic features of the data and utilize their dependent structure, we propose a functional linear model (FLM) in which a trait curve is modeled as a response function, the genetic variation in a genomic region or gene is modeled as a functional predictor, and the genetic effects are modeled as a function of both time and genomic position (FLMF) for genetic analysis of function-valued trait with both GWAS and NGS data. By extensive simulations, we demonstrate that the FLMF has the correct type 1 error rates and much higher power to detect association than the existing methods. The FLMF is applied to sleep data from Starr County health studies where oxygen saturation were measured in 22,670 seconds on average for 833 individuals. We found 65 genes that were significantly associated with oxygen saturation functional trait with P-values ranging from 2.40E-06 to 2.53E-21. The results clearly demonstrate that the FLMF substantially outperforms the traditional genetic models with scalar trait.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
04/01/2019

Gene-based Association Analysis for Bivariate Time-to-event Data through Functional Regression with Copula Models

Several gene-based association tests for time-to-event traits have been ...
research
12/03/2015

A New Statistical Framework for Genetic Pleiotropic Analysis of High Dimensional Phenotype Data

The widely used genetic pleiotropic analysis of multiple phenotypes are ...
research
09/29/2021

A copula-based set-variant association test for bivariate continuous or mixed phenotypes

In genome wide association studies (GWAS), researchers are often dealing...
research
10/29/2021

High-dimensional multi-trait GWAS by reverse prediction of genotypes

Multi-trait genome-wide association studies (GWAS) use multi-variate sta...
research
12/08/2015

Nonparametric Reduced-Rank Regression for Multi-SNP, Multi-Trait Association Mapping

Genome-wide association studies have proven to be essential for understa...
research
09/30/2022

A Partially Functional Linear Modeling Framework for Integrating Genetic, Imaging, and Clinical Data

This paper is motivated by the joint analysis of genetic, imaging, and c...
research
06/12/2021

GPA-Tree: Statistical Approach for Functional-Annotation-Tree-Guided Prioritization of GWAS Results

Motivation: In spite of great success of genome-wide association studies...

Please sign up or login with your details

Forgot password? Click here to reset