A General Sensitivity Analysis Approach for Demand Response Optimizations

10/07/2018
by   Ding Xiang, et al.
0

It is well-known that demand response can improve the system efficiency as well as lower consumers' (prosumers') electricity bills. However, it is not clear how we can either qualitatively identify the prosumer with the most impact potential or quantitatively estimate each prosumer's contribution to the total social welfare improvement when additional resource capacity/flexibility is introduced to the system with demand response, such as allowing net-selling behavior. In this work, we build upon existing literature on the electricity market, which consists of price-taking prosumers each with various appliances, an electric utility company and a social welfare optimizing distribution system operator, to design a general sensitivity analysis approach (GSAA) that can estimate the potential of each consumer's contribution to the social welfare when given more resource capacity. GSAA is based on existence of an efficient competitive equilibrium, which we establish in the paper. When prosumers' utility functions are quadratic, GSAA can give closed forms characterization on social welfare improvement based on duality analysis. Furthermore, we extend GSAA to a general convex settings, i.e., utility functions with strong convexity and Lipschitz continuous gradient. Even without knowing the specific forms the utility functions, we can derive upper and lower bounds of the social welfare improvement potential of each prosumer, when extra resource is introduced. For both settings, several applications and numerical examples are provided: including extending AC comfort zone, ability of EV to discharge and net selling. The estimation results show that GSAA can be used to decide how to allocate potentially limited market resources in the most impactful way.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset