A General Framework for Computing the Nucleolus Via Dynamic Programming
This paper defines a general class of cooperative games for which the nucleolus is efficiently computable. This class includes new members for which the complexity of computing their nucleolus was not previously known. We show that when the minimum excess coalition problem of a cooperative game can be formulated as a hypergraph dynamic program its nucleolus is efficiently computable. This gives a general technique for designing efficient algorithms for computing the nucleolus of a cooperative game. This technique is inspired by a recent result of Pashkovich (2018) on weighted voting games. However our technique significantly extends beyond the capabilities of previous work. We demonstrate this by applying it to give an algorithm for computing the nucleolus of b-matching games in polynomial time on graphs of bounded treewidth.
READ FULL TEXT