A Game-Theoretic Approach to Self-Stabilization with Selfish Agents
Self-stabilization is an excellent approach for adding fault tolerance to a distributed multi-agent system. However, two properties of self-stabilization theory, convergence and closure, may not be satisfied if agents are selfish. To guarantee convergence, we formulate the problem as a stochastic Bayesian game and introduce probabilistic self-stabilization to adjust the probabilities of rules with behavior strategies. This satisfies agents' self-interests such that no agent deviates the rules. To guarantee closure in the presence of selfish agents, we propose fault-containment as a method to constrain legitimate configurations of the self-stabilizing system to be Nash equilibria. We also assume selfish agents as capable of performing unauthorized actions at any time, which threatens both properties, and present a stepwise solution to handle it. As a case study, we consider the problem of distributed clustering and propose five self-stabilizing algorithms for forming clusters. Simulation results show that our algorithms react correctly to rule deviations and outperform comparable schemes in terms of fairness and stabilization time.
READ FULL TEXT