A Fusion Adversarial Network for Underwater Image Enhancement

06/17/2019
by   Jingjing Li, et al.
2

Underwater image enhancement algorithms have attracted much attention in underwater vision task. However, these algorithms are mainly evaluated on different data sets and different metrics. In this paper, we set up an effective and pubic underwater test dataset named U45 including the color casts, low contrast and haze-like effects of underwater degradation and propose a fusion adversarial network for enhancing underwater images. Meanwhile, the well-designed the adversarial loss including Lgt loss and Lfe loss is presented to focus on image features of ground truth, and image features of the image enhanced by fusion enhance method, respectively. The proposed network corrects color casts effectively and owns faster testing time with fewer parameters. Experiment results on U45 dataset demonstrate that the proposed method achieves better or comparable performance than the other state-of-the-art methods in terms of qualitative and quantitative evaluations. Moreover, an ablation study demonstrates the contributions of each component, and the application test further shows the effectiveness of the enhanced images.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset