A fully-coupled framework for solving Cahn-Hilliard Navier-Stokes equations: Second-order, energy-stable numerical methods on adaptive octree based meshes

09/13/2020
by   Makrand A Khanwale, et al.
0

We present a fully-coupled, implicit-in-time framework for solving a thermodynamically-consistent Cahn-Hilliard Navier-Stokes system that models two-phase flows. In this work, we extend the block iterative method presented in Khanwale et al. [Simulating two-phase flows with thermodynamically consistent energy stable Cahn-Hilliard Navier-Stokes equations on parallel adaptive octree based meshes, J. Comput. Phys. (2020)], to a fully-coupled, provably second-order accurate scheme in time, while maintaining energy-stability. The new method requires fewer matrix assemblies in each Newton iteration resulting in faster solution time. The method is based on a fully-implicit Crank-Nicolson scheme in time and a pressure stabilization for an equal order Galerkin formulation. That is, we use a conforming continuous Galerkin (cG) finite element method in space equipped with a residual-based variational multiscale (RBVMS) procedure to stabilize the pressure. We deploy this approach on a massively parallel numerical implementation using parallel octree-based adaptive meshes. We present comprehensive numerical experiments showing detailed comparisons with results from the literature for canonical cases, including the single bubble rise, Rayleigh-Taylor instability, and lid-driven cavity flow problems. We analyze in detail the scaling of our numerical implementation.

READ FULL TEXT

page 26

page 29

page 33

page 34

page 36

research
07/11/2021

A projection-based, semi-implicit time-stepping approach for the Cahn-Hilliard Navier-Stokes equations on adaptive octree meshes

We present a projection-based framework for solving a thermodynamically-...
research
11/25/2019

The nested block preconditioning technique for the incompressible Navier-Stokes equations with emphasis on hemodynamic simulations

We develop a novel iterative solution method for the incompressible Navi...
research
09/06/2023

A Micro-Macro parallel-in-time Implementation for the 2D Navier-Stokes Equations

In this paper the Micro-Macro Parareal algorithm was adapted to PDEs. Th...
research
01/14/2023

Direct numerical simulation of electrokinetic transport phenomena: variational multi-scale stabilization and octree-based mesh refinement

Finite element modeling of charged species transport has enabled the ana...
research
12/06/2021

An Upwind Generalized Finite Difference Method for Meshless Solution of Two-phase Porous Flow Equations

This paper makes the first attempt to apply newly developed upwind GFDM ...
research
12/14/2020

High–order discontinuous Galerkin approximation for a three–phase incompressible Navier–Stokes/Cahn–Hilliard model

In this work we introduce the development of a three–phase incompressibl...

Please sign up or login with your details

Forgot password? Click here to reset