A fully algebraic and robust two-level Schwarz method based on optimal local approximation spaces
Two-level domain decomposition preconditioners lead to fast convergence and scalability of iterative solvers. However, for highly heterogeneous problems, where the coefficient function is varying rapidly on several possibly non-separated scales, the condition number of the preconditioned system generally depends on the contrast of the coefficient function leading to a deterioration of convergence. Enhancing the methods by coarse spaces constructed from suitable local eigenvalue problems, also denoted as adaptive or spectral coarse spaces, restores robust, contrast-independent convergence. However, these eigenvalue problems typically rely on non-algebraic information, such that the adaptive coarse spaces cannot be constructed from the fully assembled system matrix. In this paper, a novel algebraic adaptive coarse space, which relies on the a-orthogonal decomposition of (local) finite element (FE) spaces into functions that solve the partial differential equation (PDE) with some trace and FE functions that are zero on the boundary, is proposed. In particular, the basis is constructed from eigenmodes of two types of local eigenvalue problems associated with the edges of the domain decomposition. To approximate functions that solve the PDE locally, we employ a transfer eigenvalue problem, which has originally been proposed for the construction of optimal local approximation spaces for multiscale methods. In addition, we make use of a Dirichlet eigenvalue problem that is a slight modification of the Neumann eigenvalue problem used in the adaptive generalized Dryja-Smith-Widlund (AGDSW) coarse space. Both eigenvalue problems rely solely on local Dirichlet matrices, which can be extracted from the fully assembled system matrix. By combining arguments from multiscale and domain decomposition methods we derive a contrast-independent upper bound for the condition number.
READ FULL TEXT