A framework with updateable joint images re-ranking for Person Re-identification

03/08/2018 ∙ by Mingyue Yuan, et al. ∙ 0

Person re-identification plays an important role in realistic video surveillance with increasing demand for public safety. In this paper, we propose a novel framework with rules of updating images for person re-identification in real-world surveillance system. First, Image Pool is generated by using mean-shift tracking method to automatically select video frame fragments of the target person. Second, features extracted from Image Pool by convolutional network work together to re-rank original ranking list of the main image and matching results will be generated. In addition, updating rules are designed for replacing images in Image Pool when a new image satiating with our updating critical formula in video system. These rules fall into two categories: if the new image is from the same camera as the previous updated image, it will replace one of assist images; otherwise, it will replace the main image directly. Experiments are conduced on Market-1501, iLIDS-VID and PRID-2011 and our ITSD datasets to validate that our framework outperforms on rank-1 accuracy and mAP for person re-identification. Furthermore, the update ability of our framework provides consistently remarkable accuracy rate in real-world surveillance system.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 6

page 9

page 11

page 12

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.