A Framework for Knowledge Integrated Evolutionary Algorithms

by   Ahmed Hallawa, et al.

One of the main reasons for the success of Evolutionary Algorithms (EAs) is their general-purposeness, i.e., the fact that they can be applied straightforwardly to a broad range of optimization problems, without any specific prior knowledge. On the other hand, it has been shown that incorporating a priori knowledge, such as expert knowledge or empirical findings, can significantly improve the performance of an EA. However, integrating knowledge in EAs poses numerous challenges. It is often the case that the features of the search space are unknown, hence any knowledge associated with the search space properties can be hardly used. In addition, a priori knowledge is typically problem-specific and hard to generalize. In this paper, we propose a framework, called Knowledge Integrated Evolutionary Algorithm (KIEA), which facilitates the integration of existing knowledge into EAs. Notably, the KIEA framework is EA-agnostic (i.e., it works with any evolutionary algorithm), problem-independent (i.e., it is not dedicated to a specific type of problems), expandable (i.e., its knowledge base can grow over time). Furthermore, the framework integrates knowledge while the EA is running, thus optimizing the use of the needed computational power. In the preliminary experiments shown here, we observe that the KIEA framework produces in the worst case an 80 "knowledge-free" EA counterpart.


page 5

page 13

page 14


Hybridization of Evolutionary Algorithms

Evolutionary algorithms are good general problem solver but suffer from ...

Group theory, group actions, evolutionary algorithms, and global optimization

In this paper we use group, action and orbit to understand how evolution...

Search Trajectories Networks of Multiobjective Evolutionary Algorithms

Understanding the search dynamics of multiobjective evolutionary algorit...

On the Genotype Compression and Expansion for Evolutionary Algorithms in the Continuous Domain

This paper investigates the influence of genotype size on evolutionary a...

AutoTSC: Optimization Algorithm to Automatically Solve the Time Series Classification Problem

Nowadays Automated Machine Learning, abbrevi- ated AutoML, is recognize...

Emergence of Novelty in Evolutionary Algorithms

One of the main problems of evolutionary algorithms is the convergence o...

Evolutionary Robust Clustering Over Time for Temporal Data

In many clustering scenes, data samples' attribute values change over ti...