A Formal Approach to Explainability

01/15/2020
by   Lior Wolf, et al.
0

We regard explanations as a blending of the input sample and the model's output and offer a few definitions that capture various desired properties of the function that generates these explanations. We study the links between these properties and between explanation-generating functions and intermediate representations of learned models and are able to show, for example, that if the activations of a given layer are consistent with an explanation, then so do all other subsequent layers. In addition, we study the intersection and union of explanations as a way to construct new explanations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro