A Flexible Joint Longitudinal-Survival Model for Analysis of End-Stage Renal Disease Data

07/06/2018 ∙ by Sepehr Akhavan-Masouleh, et al. ∙ 1

We propose a flexible joint longitudinal-survival framework to examine the association between longitudinally collected biomarkers and a time-to-event endpoint. More specifically, we use our method for analyzing the survival outcome of end-stage renal disease patients with time-varying serum albumin measurements. Our proposed method is robust to common parametric assumptions in that it avoids explicit distributional assumptions on longitudinal measures and allows for subject-specific baseline hazard in the survival component. Fully joint estimation is performed to account for the uncertainty in the estimated longitudinal biomarkers included in the survival model.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.