A Finite-Sample Deviation Bound for Stable Autoregressive Processes
In this paper, we study non-asymptotic deviation bounds of the least squares estimator in Gaussian AR(n) processes. By relying on martingale concentration inequalities and a tail-bound for χ^2 distributed variables, we provide a concentration bound for the sample covariance matrix of the process output. With this, we present a problem-dependent finite-time bound on the deviation probability of any fixed linear combination of the estimated parameters of the AR(n) process. We discuss extensions and limitations of our approach.
READ FULL TEXT