A Fine-Grained Hybrid CPU-GPU Algorithm for Betweenness Centrality Computations

08/13/2020
by   Ashirbad Mishra, et al.
0

Betweenness centrality (BC) is an important graph analytical application for large-scale graphs. While there are many efforts for parallelizing betweenness centrality algorithms on multi-core CPUs and many-core GPUs, in this work, we propose a novel fine-grained CPU-GPU hybrid algorithm that partitions a graph into CPU and GPU partitions, and performs BC computations for the graph on both the CPU and GPU resources simultaneously with very small number of CPU-GPU communications. The forward phase in our hybrid BC algorithm leverages the multi-source property inherent in the BC problem. We also perform a novel hybrid and asynchronous backward phase that performs minimal CPU-GPU synchronizations. Evaluations using a large number of graphs with different characteristics show that our hybrid approach gives 80 performance, and 80-90 algorithm based on the popular Bulk Synchronous Paradigm (BSP) approach.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro