A Feature-based Classification Technique for Answering Multi-choice World History Questions

05/05/2015 ∙ by Shuangyong Song, et al. ∙ 0

Our FRDC_QA team participated in the QA-Lab English subtask of the NTCIR-11. In this paper, we describe our system for solving real-world university entrance exam questions, which are related to world history. Wikipedia is used as the main external resource for our system. Since problems with choosing right/wrong sentence from multiple sentence choices account for about two-thirds of the total, we individually design a classification based model for solving this type of questions. For other types of questions, we also design some simple methods.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.