A Fast Semidefinite Approach to Solving Binary Quadratic Problems

04/03/2013
by   Peng Wang, et al.
0

Many computer vision problems can be formulated as binary quadratic programs (BQPs). Two classic relaxation methods are widely used for solving BQPs, namely, spectral methods and semidefinite programming (SDP), each with their own advantages and disadvantages. Spectral relaxation is simple and easy to implement, but its bound is loose. Semidefinite relaxation has a tighter bound, but its computational complexity is high for large scale problems. We present a new SDP formulation for BQPs, with two desirable properties. First, it has a similar relaxation bound to conventional SDP formulations. Second, compared with conventional SDP methods, the new SDP formulation leads to a significantly more efficient and scalable dual optimization approach, which has the same degree of complexity as spectral methods. Extensive experiments on various applications including clustering, image segmentation, co-segmentation and registration demonstrate the usefulness of our SDP formulation for solving large-scale BQPs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro