A fast and efficient Modal EM algorithm for Gaussian mixtures

02/10/2020
by   Luca Scrucca, et al.
0

In the modal approach to clustering, clusters are defined as the local maxima of the underlying probability density function, where the latter can be estimated either non-parametrically or using finite mixture models. Thus, clusters are closely related to certain regions around the density modes, and every cluster corresponds to a bump of the density. The Modal EM algorithm is an iterative procedure that can identify the local maxima of any density function. In this contribution, we propose a fast and efficient Modal EM algorithm to be used when the density function is estimated through a finite mixture of Gaussian distributions with parsimonious component-covariance structures. After describing the procedure, we apply the proposed Modal EM algorithm on both simulated and real data examples, showing its high flexibility in several contexts.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset