DeepAI AI Chat
Log In Sign Up

A fast algebraic multigrid solver and accurate discretization for highly anisotropic heat flux I: open field lines

by   Golo A. Wimmer, et al.
Los Alamos National Laboratory

We present a novel solver technique for the anisotropic heat flux equation, aimed at the high level of anisotropy seen in magnetic confinement fusion plasmas. Such problems pose two major challenges: (i) discretization accuracy and (ii) efficient implicit linear solvers. We simultaneously address each of these challenges by constructing a new finite element discretization with excellent accuracy properties, tailored to a novel solver approach based on algebraic multigrid (AMG) methods designed for advective operators. We pose the problem in a mixed formulation, introducing the heat flux as an auxiliary variable and discretizing the temperature and auxiliary fields in a discontinuous Galerkin space. The resulting block matrix system is then reordered and solved using an approach in which two advection operators are inverted using AMG solvers based on approximate ideal restriction (AIR), which is particularly efficient for upwind discontinuous Galerkin discretizations of advection. To ensure that the advection operators are non-singular, in this paper we restrict ourselves to considering open (acyclic) magnetic field lines. We demonstrate the proposed discretization's superior accuracy over other discretizations of anisotropic heat flux, achieving error 1000× smaller for anisotropy ratio of 10^9, while also demonstrating fast convergence of the proposed iterative solver in highly anisotropic regimes where other diffusion-based AMG methods fail.


page 1

page 2

page 3

page 4


A Family of Independent Variable Eddington Factor Methods with Efficient Linear Solvers

We present a family of discretizations for the Variable Eddington Factor...

A Fast Spectral Solver for the Heat Equation, with Applications to Navier-Stokes

We develop a spectral method to solve the heat equation in a closed cyli...

Numerical discretization of a Darcy-Forchheimer problem coupled with a singular heat equation

In Lipschitz domains, we study a Darcy-Forchheimer problem coupled with ...

Accelerating linear solvers for Stokes problems with C++ metaprogramming

The efficient solution of large sparse saddle point systems is very impo...

Optimizing Geometric Multigrid Methods with Evolutionary Computation

For many linear and nonlinear systems that arise from the discretization...

Parallel Element-based Algebraic Multigrid for H(curl) and H(div) Problems Using the ParELAG Library

This paper presents the use of element-based algebraic multigrid (AMGe) ...