A family of constacyclic codes over F_2^m+uF_2^m and application to quantum codes

12/06/2017
by   Yongsheng Tang, et al.
TOM.COM Corporation
NetEase, Inc
0

We introduce a Gray map from F_2^m+uF_2^m to F_2^2m and study (1+u)-constacyclic codes over F_2^m+uF_2^m, where u^2=0. It is proved that the image of a (1+u)-constacyclic code length n over F_2^m+uF_2^m under the Gray map is a distance-invariant quasi-cyclic code of index m and length 2mn over F_2. We also prove that every code of length 2mn which is the Gray image of cyclic codes over F_2^m+uF_2^m of length n is permutation equivalent to a binary quasi-cyclic code of index m. Furthermore, a family of quantum error-correcting codes obtained from the Calderbank-Shor-Steane (CSS) construction applied to (1+u)-constacyclic codes over F_2^m+uF_2^m.

READ FULL TEXT VIEW PDF
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

03/09/2019

Construction of Isodual Quasi-cyclic Codes over Finite Fields

This paper considers the construction of isodual quasi-cyclic codes. Fir...
03/14/2018

On the Security of Some Compact Keys for McEliece Scheme

In this paper we study the security of the key of compact McEliece schem...
07/04/2021

Expanded Gabidulin Codes and Their Application to Cryptography

This paper presents a new family of linear codes, namely the expanded Ga...
03/08/2019

The GC-content of a family of cyclic codes with applications to DNA-codes

Given a prime power q and a positive integer r>1 we say that a cyclic co...
11/02/2019

The Niederreiter cryptosystem and Quasi-Cyclic codes

McEliece and Niederreiter cryptosystems are robust and versatile cryptos...
12/19/2017

Quasi-Cyclic Constructions of Quantum Codes

We give sufficient conditions for self-orthogonality with respect to sym...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.

References

  • [1] A.R. Hammons Jr., P.V. Kumar, A.R. Calderbank, N.J.A. Sloane, P. Solé, The -linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory 40 (2) (1994) 301-309.
  • [2] J. Wolfmann, Negacyclic and cyclic codes over , IEEE Trans. Inform. Theory 45 (7) (1999) 2527-2532.
  • [3] S. Ling, J. Blackford, -linear codes, IEEE Trans. Inform. Theory 48 (2002) 2592-2605.
  • [4] H.Q. Dinh, S.R. López-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory 50 (8) (2004) 1728-1744.
  • [5] C. Bachoc, Application of coding theory to the construvtion of modular lattices, J.Combin. Theory Ser. 78 (1997) 92-119.
  • [6] A. Bonnecaze, P. Udaya, Cyclic codes and self-dual codes over , IEEE Trans. Inform. Theory 45 (1999) 1250-1255.
  • [7] S. Zhu, Y. Wang, M. Shi, Some results on cyclic codes over , IEEE Trans. Inform. Theory 56 (4) (2010) 1680-1684.
  • [8] S.T. Dougherty, P. Gaborit, M. Harada, P. Solóe, Type II codes over , IEEE Trans. Inform. Theory 45 (1999) 32-45.
  • [9] K. Betsumiya, S. Ling, F.R. Nemenzo, Type II codes over , Discrete Mathematics 275 (2004) 43-65.
  • [10] J. Qian, L. Zhang, S. Zhu, constacyclic and cyclic codes over Applied Math. Letters, 19 (2006) 820-823.
  • [11] M.C.V. Amarra, F.R. Nemenzo, On -cyclic codes over Applied Math. Letters, 21 (2008) 1129-1133.
  • [12] T. Abualrub, I. Siap, Constacyclic codes over , Journal of the Franklin Institute 346 (2009) 520-529.
  • [13] H.Q. Dinh, Constacyclic codes of length over Galois extension rings of , IEEE Trans. Inform. Theory 55 (2009) 1730-1740.
  • [14] S. Karadenniz, B. Yildiz, constacyclic codes over , Journal of the Franklin Institute 8 (2011) 1-8.
  • [15] X. Kai, S. Zhu, L. Wang, A family of constacyclic codes over , Journal of Systems Science and Complexity 25 (2012) 1032-1040.
  • [16] B. Yildiz, Weights modulo of linear codes over rings, Designs, Codes and Cryptography 43(2007) 147-165.
  • [17] M.Grassl, Bounds on the minimum distance of linear codes. http://www.codetables.de.
  • [18] A.R. Calderbank, E.M. Rains, P.W. Shor, N.J.A. Sloane, Quantum error correction via codes over IEEE Trans. Inform. Theory 44 (1998) 1369-1387.
  • [19] J. Qian, W. Ma, W. Gou, Quantum codes from cyclic codes over finite ring, International Journal of Quantum Information 7(2009) 1277 - 1283.
  • [20] X. Kai, S. Zhu, Quaternary construction of quantum codes from cyclic codes over , International Journal of Quantum Information 9(2011) 689 -700.
  • [21] K. Guenda, T.A. Gulliver, Quantum codes over rings, International Journal of Quantum Information 12(2014) 1450020(1-14).
  • [22] M. Sari, I. Siap, On quantum codes from cyclic codes over a class of nonchain rings, Bull. Korean Math. Soc. 53(2016)1617-1628.
  • [23] Y.Tang, S.Zhu, X.Kai, J.Ding, New quantum codes from dual-containing cyclic codes over finite rings, Quantum Information Processing 15(2016) 4489-4500.
  • [24] X.Liu, H.Liu, Quantum codes from linear codes over finite chain rings, Quantum Information Processing 16(2017) 240(1-14).
  • [25] R.Li, X.Li, Quantum codes constructed from binary cyclic codes, International Journal of Quantum Information 2(2004) 265-272.