A Doubly-Enhanced EM Algorithm for Model-Based Tensor Clustering

12/18/2020
by   Qing Mai, et al.
0

Modern scientific studies often collect data sets in the forms of tensors, which call for innovative statistical analysis methods. In particular, there is a pressing need for tensor clustering methods to understand the heterogeneity in the data. We propose a tensor normal mixture model (TNMM) approach to enable probabilistic interpretation and computational tractability. Our statistical model leverages the tensor covariance structure to reduce the number of parameters for parsimonious modeling, and at the same time explicitly exploits the correlations for better variable selection and clustering. We propose a doubly-enhanced expectation-maximization (DEEM) algorithm to perform clustering under this model. Both the E-step and the M-step are carefully tailored for tensor data in order to account for statistical accuracy and computational cost in high dimensions. Theoretical studies confirm that DEEM achieves consistent clustering even when the dimension of each mode of the tensors grows at an exponential rate of the sample size. Numerical studies demonstrate favorable performance of DEEM in comparison to existing methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset