A Double Exponential Lower Bound for the Distinct Vectors Problem

02/04/2020
by   Marcin Pilipczuk, et al.
0

In the (binary) Distinct Vectors problem we are given a binary matrix A with pairwise different rows and want to select at most k columns such that, restricting the matrix to these columns, all rows are still pairwise different. A result by Froese et al. [JCSS] implies a 2^2^(O(k)) * poly(|A|)-time brute-force algorithm for Distinct Vectors. We show that this running time bound is essentially optimal by showing that there is a constant c such that the existence of an algorithm solving Distinct Vectors with running time 2^(O(2^(ck))) * poly(|A|) would contradict the Exponential Time Hypothesis.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset