A Distributionally Robust Area Under Curve Maximization Model
Area under ROC curve (AUC) is a widely used performance measure for classification models. We propose a new distributionally robust AUC maximization model (DR-AUC) that relies on the Kantorovich metric and approximates the AUC with the hinge loss function. We use duality theory to reformulate the DR-AUC model as a tractable convex quadratic optimization problem. The numerical experiments show that the proposed DR-AUC model – benchmarked with the standard deterministic AUC and the support vector machine models - improves the out-of-sample performance over the majority of the considered datasets. The results are particularly encouraging since our numerical experiments are conducted with training sets of small size which have been known to be conducive to low out-of-sample performance.
READ FULL TEXT